烟。火灾烟气是火灾发生过程中因热解和燃烧作用形成的产物,是可燃物在燃烧时散发的含有瓦斯的液体微粒子和固体的煤烟颗粒等形成的悬浮物。烟气对人的眼睛有很大的刺激作用,使眼睛充血流泪,严重的还会造成剧烈疼痛,影响人的视线。另外,烟气积聚使能见度下降,影响人们的疏散速度。当烟在一般房间中,物质燃烧产生的烟随热气流上升至顶部。烟碰到天花板后向四周水平散开在天花板下作水平运动,当遇到四壁时,即向下运动,但因其温度仍较下部高,旋即又上浮,逐渐在天花板下面形成一层高温烟气层。当烟层底面低于门窗等开口部位时,烟从开口处流出室外,并沿走廊、楼道和开口处进入建筑物的其他部位。烟气的温度刚离开火焰时可达1000°C,从密闭起火房间流出的烟气温度为600--700°C,房间内着火时烟气向上的速度为2—3m/s,当烟气充满房间上部时以0.5—1m/s的速度水平扩散,随着扩散距离增大,温度下降,烟粒子下沉。一般认为烟层下降至地面1.5米,即会造成能见度下降,威胁人身安全。
烟的密度与温度成反比,温度越高,烟的密度越小。热烟密度小,就产生向上的浮力,建筑物内上部的压力大于室外压力,下部的压力小于室外压力。当外墙上有开口时,通过建筑物上部的开口,室内空气流向室外;通过下部的开口,室外空气流向室内,这种现象就是建筑物的烟囱效应。它是由高层建筑物内外空气的密度差造成的,高层建筑的外部温度低于内部温度而形成的压力差将空气从低处压入,穿过建筑物向上流动,然后从高处流出建筑物,这种现象被称为正热压作用。在低处外部压力大于内部压力,在高处则相反,在中间某一高度,内外压力相同,即存在一个中性压力面。烟囱效应随建筑物的内部温度差以及建筑物高度的增加而增加,在火灾发生于较低层时,烟囱效应对竖井和较高层的烟污染的影响尤为显著,因此,此时烟从低层上升至高层内的潜力更大。由烟囱效应造成的压力差和气流分布,以及中性压力面的位置,取决于建筑物内分隔物的开口对气体流动的限制程度。发生火灾时,由于燃烧放出大量热量,室内温度快速升高,建筑物的烟囱效应更加显著,使火灾的蔓延更加迅速。
毒。近年来,随着高分子合成材料在建筑、装修及家具等行业中的广泛应用,火灾中烟雾的毒性日趋严重。物质燃烧时,可能形成主要有害气体包括:一氧化碳、二氧化碳、氯化氢、氮的氧化物、硫化氢、氰化氢、光气等。
火场上大多数可燃物质含有碳,当供给的空气充足时,碳燃烧并生成二氧化碳,但当空气不足时,便形成危险的一氧化碳。而燃烧区的空气通常是不充足的。火灾初起阶段,燃烧产物中不仅有水蒸气、二氧化碳,而且还有不完全燃烧生成的一氧化碳等其他有害气体,其中一氧化碳的含量在浓烟中可高达1%。一氧化碳吸入人体后与血红蛋白结合成碳氧血红蛋白,严重阻碍血液携氧及解离能力,形成低氧血症,引起组织缺氧及碳酸蓄积,形成内窒息。一氧化碳与血红蛋白的亲合力比氧大200--300倍,而碳氧血红蛋白的离解又比氧合血红蛋白慢3600倍。大量的一氧化碳一旦进入血液,就会干扰氧的传递,导致内组织中毒,所以当空气中一氧化碳含量达到1%时,人呼吸数次后就会失去知觉,1-2分钟内即可死亡。
空气中正常二氧化碳浓度为0.03%,而火灾现场则大大超过这一浓度。根据实验,二氧化碳在高浓度时有显著毒性。实验条例为低氧(5%)状态下,用含量为11%二氧化碳即可使实验动物于60分钟内全部死亡,而单纯在低氧(5%)的气体中,仅能使1/10的动物死亡。
在现代的装饰材料中,大量使用聚氯乙烯物质。当聚氯乙烯在温度达到200°C--300°C时即有一半会分解放出氯化氢,而氯化氢在500ppm时就有剧烈的刺激性,在短时间内便能致人于死地。这是由于氯化氢通过刺激眼、上呼吸道黏膜而使上呼吸道破坏,形成机械窒息。如果燃烧的是泡沫塑料及化纤织物的原料、中间品、自燃(催化剂)和引发剂,还会产生光气、氯气、氰化氢等剧毒气体,吸入人体内会发生中毒、窒息等后果。