安全管理网

IGBT的锁定效应和安全工作区

  
评论: 更新日期:2018年11月26日


    1.锁定效应
IGBT为四层结构,体内存在一个寄生晶体管,其等效电路如图1所示。在V2的基极与发射极之间并有一个扩展电阻Rb,在此电阻上,P型体区的横向空穴会产生一定压降,对J3结来说,相当于一个正偏电流范围内,这个正偏置电压不大,对V2不起作用,当Id大到一定程度时,该正偏置电压足以使V2开通,进而使V2和V3处于饱和状态,于是寄生晶体管开通,栅极失去对集电极电流的控制作用,这就是所谓的IGBT的静态锁定效应,IGBT发生锁定效应后,漏极电流增大,造成过高功耗,导致损坏。可见,漏极电流有一个临界值Idm,当Id> Idm时便会产生锁定效应。

  具有寄生晶体管的IGBT等效电路在IGBT 关断的动态过程中,假若dvds/dt过高,那么在J2结中引起的位移电流会增大,当该电流流过体区扩展电阻Rb时,也可产生足以使晶体管V2开通的正向偏置电压,满足寄生晶体管开通锁定的条件,形成动态锁定效应。为此,在应用中必须防止IGBT发生锁定效应,为此可限制Idm值,或用加大栅极电阻RG的办法延长IGBT关断时间,以减少dvds/dt值。值得指出的是,动态锁定效应允许的漏极电流比静态锁定所允许的要小,IGBT 器件提供的Id值是按动态锁定效应所允许的最大漏极电流来确定的。锁定效应曾限制 IGBT 电流容量提高,这个问题在20世纪90 年代中后期开始逐渐解决,即将IGBT与反并联的快速二极管封装在一起,制成模块,成为逆导器件。
2.安全工作区
安全工作区(SOA)反映了一个功率器件同时承受一定电压和电流的能力。IGBT的安全工作区可以分为三个主要区域:
1)正向导通[正向偏置安全工作区( FBSOA)]。这部分安全工作区是指电子和空穴电流在导通瞬态时流过的区域。在lc处于饱和状态时,IGBT所能承受的最大电压是器件的物理极限。IGBT开通时的正向偏置安全工作区由 电流、电压和功耗三条边界极限包围而成(最大集电极电流、最大集电极—发射极间电压和最大集电极功耗)。最大集电极电流ICmax是根据避免动态锁定效应而设定的,最大集电极—发射极电压VCEmax是由IGBT中晶体管V2的击穿电压所确定,最大功耗则是由最高允许结温所决定。导通时间越长,发热越严重,安全工作区则越窄。

 2)反向偏置安全工作区(Reverse Bias Safe Operation Area,RBSOA)  由反向最大集电极电流、最大集电极—发射极间电压和最大允许电压上升率dvCE/dt 确定,这个区域表示栅偏压为零或负值但因空穴电流没有消失,丽;存在时的关断瞬态。IGBT的反向偏置安全工作区如图2b所示,它随IGBT 关断时的dvCE/dt而改变,dvCE/dt越高,RBSOA越窄。
3)短路安全工作区(短路安全运行Short CircUit Safe Operation Area,SCSOA)。SCSOA是在电源电压条件下接通器件后,所测得的驱动电路控制被测试器件的时间最大值。
在设计缓冲电路时要保证使关断时VCE - IC的工作轨迹全部容纳在该RBSOA区域内。由于SCSOA区在集电极电流变大时有变窄的倾向,在应用设计中需要加以注意。
 

网友评论 more
创想安科网站简介会员服务广告服务业务合作提交需求会员中心在线投稿版权声明友情链接联系我们